Train a machine learning model on a collection露
Here, we iterate over the artifacts within a collection to train a machine learning model at scale.
import lamindb as ln
馃挕 connected lamindb: testuser1/test-scrna
ln.settings.transform.stem_uid = "Qr1kIHvK506r"
ln.settings.transform.version = "1"
ln.track()
馃挕 notebook imports: lamindb==0.75.0 torch==2.4.0
馃挕 saved: Transform(uid='Qr1kIHvK506r5zKv', version='1', name='Train a machine learning model on a collection', key='scrna5', type='notebook', created_by_id=1, updated_at='2024-08-06 18:32:18 UTC')
馃挕 saved: Run(uid='1AOPO664ntukqY9rfzdd', transform_id=5, created_by_id=1)
Run(uid='1AOPO664ntukqY9rfzdd', started_at='2024-08-06 18:32:18 UTC', is_consecutive=True, transform_id=5, created_by_id=1)
Query our collection:
collection = ln.Collection.filter(
name="My versioned scRNA-seq collection", version="2"
).one()
collection.describe()
Show code cell output
Collection(uid='1BzyBzHTHpjklT2dprxh', version='2', name='My versioned scRNA-seq collection', hash='ALSqXiQ6gOCCwEGmVnuLQA', visibility=1, updated_at='2024-08-06 18:31:55 UTC')
Provenance
.created_by = 'testuser1'
.transform = 'Standardize and append a batch of data'
.run = '2024-08-06 18:31:33 UTC'
.input_of_runs = ["'2024-08-06 18:32:05 UTC'"]
Feature sets
'var' = 'MIR1302-2HG', 'FAM138A', 'OR4F5', 'None', 'OR4F29', 'OR4F16', 'LINC01409', 'FAM87B', 'LINC01128', 'LINC00115', 'FAM41C'
'obs' = 'donor', 'tissue', 'cell_type', 'assay'
Create a map-style dataset露
Let us create a map-style dataset using using mapped()
: a MappedCollection
. This is what, for example, the PyTorch DataLoader
expects as an input.
Under-the-hood, it performs a virtual inner join of the features of the underlying AnnData
objects and thus allows to work with very large collections.
You can either perform a virtual inner join:
with collection.mapped(obs_keys=["cell_type"], join="inner") as dataset:
print(len(dataset.var_joint))
749
Or a virtual outer join:
dataset = collection.mapped(obs_keys=["cell_type"], join="outer")
len(dataset.var_joint)
36503
This is compatible with a PyTorch DataLoader
because it implements __getitem__
over a list of backed AnnData
objects.
The 5th cell in the collection can be accessed like:
dataset[5]
Show code cell output
{'X': array([0., 0., 0., ..., 0., 0., 0.], dtype=float32),
'_store_idx': 0,
'cell_type': 16}
The labels
are encoded into integers:
dataset.encoders
Show code cell output
{'cell_type': {'lymphocyte': 0,
'megakaryocyte': 1,
'germinal center B cell': 2,
'B cell, CD19-positive': 3,
'macrophage': 4,
'CD8-positive, CD25-positive, alpha-beta regulatory T cell': 5,
'memory B cell': 6,
'regulatory T cell': 7,
'dendritic cell': 8,
'effector memory CD8-positive, alpha-beta T cell, terminally differentiated': 9,
'CD16-negative, CD56-bright natural killer cell, human': 10,
'gamma-delta T cell': 11,
'naive thymus-derived CD8-positive, alpha-beta T cell': 12,
'CD8-positive, alpha-beta memory T cell': 13,
'CD38-positive naive B cell': 14,
'plasma cell': 15,
'cytotoxic T cell': 16,
'dendritic cell, human': 17,
'plasmablast': 18,
'group 3 innate lymphoid cell': 19,
'conventional dendritic cell': 20,
'mast cell': 21,
'CD8-positive, alpha-beta memory T cell, CD45RO-positive': 22,
'mucosal invariant T cell': 23,
'naive thymus-derived CD4-positive, alpha-beta T cell': 24,
'CD4-positive helper T cell': 25,
'alpha-beta T cell': 26,
'alveolar macrophage': 27,
'CD14-positive, CD16-positive monocyte': 28,
'effector memory CD4-positive, alpha-beta T cell': 29,
'classical monocyte': 30,
'progenitor cell': 31,
'T follicular helper cell': 32,
'animal cell': 33,
'effector memory CD4-positive, alpha-beta T cell, terminally differentiated': 34,
'CD16-positive, CD56-dim natural killer cell, human': 35,
'naive B cell': 36,
'plasmacytoid dendritic cell': 37,
'non-classical monocyte': 38}}
Create a pytorch DataLoader露
Let us use a weighted sampler:
from torch.utils.data import DataLoader, WeightedRandomSampler
# label_key for weight doesn't have to be in labels on init
sampler = WeightedRandomSampler(
weights=dataset.get_label_weights("cell_type"), num_samples=len(dataset)
)
dataloader = DataLoader(dataset, batch_size=128, sampler=sampler)
We can now iterate through the data loader:
for batch in dataloader:
pass
Close the connections in MappedCollection
:
dataset.close()
In practice, use a context manager
with collection.mapped(obs_keys=["cell_type"]) as dataset:
sampler = WeightedRandomSampler(
weights=dataset.get_label_weights("cell_type"), num_samples=len(dataset)
)
dataloader = DataLoader(dataset, batch_size=128, sampler=sampler)
for batch in dataloader:
pass